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Abstract 
Basically two principles are currently used to characterize structural borne noise in solid state materials 
besides laser vibrometry. In the lower frequency range it is the old seismic transducer as it is used in the 
classic accelerometer tuned to 20 kHz and sometimes using the resonance frequency range up to 100 kHz. 
In the higher frequency ranges from 50 kHz to 900 kHz usually the Acoustic Emission (AE) sensor is 
used. Both sensor principles are introduced.  
Accelerometers are in use for many applications such as operational, environmental, structural or 
durability testing, and are requiring more and more triaxial IEPE accelerometers with higher frequency 
operation - in the three orthogonal directions, for shock and vibration. The innovative mounting principle 
for Kistler’ s miniature PiezoStar® and Piezoceramic triaxial cube accelerometer families offers a 
practical solution and improves the frequency calibration method to higher limits tremendously. The 
seismic elements of these IEPE triaxial accelerometer families have inherent benefits resulting in high 
resonance frequency where the sensor design provides stud mounting for each orthogonal axis thanks to 
threaded holes on 3 of the sensor’s faces. The calibration methodology will be reviewed supporting 
frequencies up to 20 kHz, without additional mechanical fixtures which can impact precision 
measurements. 
AE sensors are non-seismic transducers; they detect travelling surface waves and use a probe mechanism 
with deformation of a piezoelectric ceramic element. AE transducers are in very wide range of 
applications, such as crack detection in metal sheet forming, tool breakage, cavitation detection and many 
others. 

Keywords: accelerometer, acoustic emission sensor, frequency response, structural borne noise. 

PACS no. 43.38.Fx, 43.40.LE, 43.40.Yq 

1 Introduction 

Structural borne noise can be measured in very different frequency ranges. Not just one sensor principle is 
able to acquire those data’s. For physical mounted sensors two principles are used nowadays in most 
cases. In the frequency range up to 20 kHz it is the classical accelerometer with its seismic sensing 
element mainly based on the piezoelectric effect [1]. Those can be calibrated over a frequency range up to 
20 kHz with traceability to National Metrological Institutes (NMI); typical uncertainties are given at 
approx. 5% or less for single frequency sensitivity points up to 20 kHz. The frequency range up to 50 kHz 
or bit higher is, on the other end, characterized by a not accountable measurement uncertainty that cannot 
be given traceability. A frequency signature can be deviated as long as the signal is not overloaded due to 
an accelerometer seismic element resonance.  
Those test results can be quite useful in applications such as measuring structural borne noise of bearings, 
gear boxes etc. in condition monitoring, pyroshock testing or for crash induced sound sensing during 
impact testing of automotive structures. In most cases those measurements can be deviated for all three 
orthogonal axes. 
For higher frequencies from 50 kHz to 1 MHz or even higher, so called acoustic emission (AE) sensors 
are used. Such high frequency structural borne noise may get generated by crack forming in solid material, 
improper sealed valves in engines or compressors, particle impacts to or friction between metal sheets, 
grinding process and others. In all those cases, the generated surface wave is captured by the AE sensor at 
the surface of a solid state body. The measurement principle is different from measuring acceleration. It 
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methods in order to determine the frequency response of AE sensors are described in [10] using primary 
methods. Although most of the time, those are performed with secondary comparison methods. 
The high-pass characteristics of the AE sensor suppress a large part of the low frequency interference 
signals. Therefore the AE sensor is insensitive to movements in contradiction to accelerometer. It offers a 
decoupling to low frequency movements. The wideband AE sensor has a uniform sensitivity over the 
frequency range. Its sensitivity is less than that of resonance type sensors. Thanks to a band pass filtering 
available in the signal conditioner, individual frequency ranges can be selected in order to focus on the 
signal of interest. Wideband sensors allow the investigation of the frequency ranges of useful signals, if 
they are insufficiently known or to assure high flexibility in the signal evaluation. 
In principal AE signals should always be detected over the full frequency range and as close as possible to 
the source to allow an optimal signal amplitude. Due to the length and the number of interfaces in the 
travelling path of the acoustic wave between the AE source and the sensor installation point, high 
frequency signals are attenuated to a large extent. By the advantage of their small size, these AE sensors 
are particularly suited for the installation close to the acoustic source, even in limited space. 
The AE sensor has been designed with ground isolation and internal Faraday shielding to avoid ground 
loop effects and reduce noise in the high impedance part of the sensor. To improve the immunity to 
electromagnetic interference an internal IEPE impedance converter has been integrated into the AE sensor 
providing a voltage output. 
For monitoring operations the relatively complex high frequency AE signal need to be processed with a 
very high sampling rate. Nowadays modern DAQ’s with 24 bit and 4 MHz sampling rate are available 
[14]. Most of the time, this signal type is used for the evaluation of the process under investigation. In a 
first step, certain events in the process under test should be correlated to a certain frequency band in the 
Fourier transformation of the time signal. In a second phase, the raw AE signal can be band pass filtered 
and rms-averaged. This rms-average signal Urms can be sampled with much lower rates and acquired over 
time, see Equ. (1). It can also be compared with a reference level to activate a logic limit switch output 
signal. The block diagram of such a measurement chain is shown in Fig. 13. 
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AE sensors are used in a very wide range of applications. Typical the time acoustic emissions will be 
generated through dislocation movements, phase transformations or crack formations and extensions in 
solid state materials [15] or friction mechanisms [16]. They will be used for monitoring in grinding or 
polishing processes of glass or metal surfaces, sealing of valves on engines or high pressure industrial 
compressors for chemical plants, the determination of coal particle size distribution for power plants [17, 
18, 19], industrial metal wire drawing, detection of glass fiber splits or in filament fiber processing [20], 
punching of metal sheets, needle break detection and more. Often, a second measurand in the process can 
be helpful as discriminators to identify the event in the process, like applied forces or others. 

 
Figure 13 – Block diagram of a measurement chain with AE sensor and signal conditioner 

 Kistler type 5125C. 
 

Deep drawing of metal sheets is one of the impressive examples in use of in-process monitoring of AE 
sensors. Sometimes, basic parts are made on high speed transfer press by deep drawing and punching at up 
to 300 strokes/min. Nowadays, Industry 4.0 networking of machinery requires to define more parameters 
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mounting these sensors in any direction simplifies everyday work during installation. It allows the 
characterization of structural borne noise up to 12 kHz within 5% sensitivity deviation with a traceable 
calibration or even higher, but wider deviation. Higher frequency limits can be achieved, if larger 
sensitivity deviations are accepted and signal attenuation did not happen. 
In the frequency range from 50 kHz to nearly 1 MHz, AE sensors are widely used for various processes 
monitoring in order to insure product quality, process safety, improvement of process efficiency and more. 
Both sensor types are used to measure structural borne noise in this very wide frequency range. Between 
20 kHz to 50 kHz might be a gap, where both sensor types are not properly suited. It is usually filled with 
accelerometers under mounted resonance conditions. This requires some precautions and will show highly 
non-linear amplitude frequency response. This requires very stiff seismic elements, and stiff crystalline 
piezoelectric materials that can be seen in the latest accelerometer designs. 

References  

[1] Th. Petzsche, H. Müller. Capter 4: Beschleunigung in „Handbuch der Mess- und 
Automatisierungstechnik in der Produktion“, Hsg.: H.-J. Gevatter, U. Grünhaupt. Springer Verlag, 
2006. 

[2] Methods for the calibration of vibration and shock transducers: DIN EN ISO 16063-1x und DIN EN 
ISO 16063-2x. 

[3] ASTM E976 – 10: Standard Guide for Determining the Reproducibility of Acoustic Emission 
Sensor Response. 

[4] Accelerometer Resonance Testing described in DIN EN ISO 5743-xx and DIN EN ISO 16063-32 
in:  

Methods for the calibration of vibration and shock pick-ups;  
ISO 5347-14:1993, Part 14: Resonance frequency testing of undamped accelerometers on a steel 
block. 
ISO 5347-22:1993, Part 19: Accelerometer Resonance Testing. 
Methods for the calibration of vibration and shock transducers: 
ISO DIS 16063-32 "Methods for the calibration of vibration and shock transducers - Part 32: 
Resonance testing (Rev. for ISO 5347-14:1993). 
 

[5] ENDEVCO Handbook of Shock and Vibration Measurement Technology; ENDEVCO, San Juan 
Capistrano, CA, USA, 1988.  

[6] Th. Petzsche; A. Cook; M. Dumont. Triaxial Accelerometer, High Frequency Measurement and 
Temperature Stability Considerations, Proc. of the XXXII. International Modal Analysis Conference, 
Orlando, USA, Feb. 2-3, 2014. 

[7] Kistler Data sheets to the types 8762A, 8763B, 8766A50 and 8766A250/500 at www.kistler.com, 
2016. 

[8] http://www.tasler.de/storage/med/media/presseinfos/presseeng/151_Tracking_down_structure-
borne_sound_Conti-Report-Final_incl_Picture.pdf, 2016. 

[9] Christian Lauerer, Paul Spannaus and Thomas Bradmeier: Acquisition and evaluation of mechanical 
high-frequency waves in car crash for improved crash detection of occupant protection systems; in 
Sensoren und Messsysteme 2010; VDE Verlag Berlin Offenbach; ISBN 978-3-8007-3260-9. 

[10] V. Liebig; Dr. E. Pridöhl; St. Lohse-Koch; N. Hoppe; Dr. Cl. Cavaloni, Dr. A. Kirchheim. Absolute 
Calibration of AE sensors with Laser Induced Surface waves, Proc.of the 23rd European Conf. on 
Acoustic Emission Testing, Vienna, Austria, May 6-8, 1998.  

[11] C. Cavaloni; A. Kirchheim. New Acoustic Emmission Sensors for In-Process Monitoring, Proc. of 
the 12th Int. Acoustic Emission Symp, Sapporo, Japan, Oct. 17-20, 1994. 



InnoTesting 2020 - „Innovative Ideen – neue Testmethoden“ 
Wildau (Berlin), 27.-28.Feb. 2020 

 

11/11 
 

[12] M. Greenspan: The NBS conical transducer  analysis, J. Acoust. Soc. Am., Vol. 81(1987), pp.173-
183. 

[13] Kistler data sheet to type 8152C at www.kistler.com, 2016. 

[14] LTT Tasler, data sheet for for data recorder LTT24 at www.tasler.de, 2016. 

[15] Jens Trampe Broch. Mechanical Vibration and Shock Measurements. Brüel & Kjær; 1984; chapter 9. 

[16] Markus Dickerhof. Potentials of acoustic emission analysis in monitoring and diagnosis of 
tribological systems,  Dissertation at Inst. for Product Development, Karlsruhe Institute of 
Technology; 2011; ISSN 1615-8113. 

[17] M. Biscuola, M. Gualerci, I. Brunetti, D. Pestonesi, N. Rossi, S. Collura, F. De Angelis. An 
Advanced Monitoring and Diagnostic System for Coal Mill Optimization in Thermoelectric Power 
Plants, Proc. of the Power Gen, Amsterdam; June 9-11, 2015. 

[18] A.Cook, S. Collura, M. Dumont, T. Urbank; Continuous Monitoring of Powder Size Distribution 
using High Temperature ATEX Acoustic Emission Sensors, Proc. of the 31st Conference of the 
European Working Group on Acoustic Emission (EWGAE) – Th.3.B.2., Dresden, Germany, Sept. 3-
5, 2014. 

[19] S. Collura, D. Possanzini, M.Gualerci, L.Bonelli, D.Pestonesi. Coal mill performances optimization 
through non-invasive online coal fineness monitoring, proc. of the Power Gen, Wien, June 4-6, 2013. 

[20] Gunnar Henrik Seide. Akustische Online-Überwachung und Strömungssimulation von 
Verwirbelungssprozessen bei der Filamentgarnverarbeitung. Dissertation at RWTH Aachen, Faculty 
for Mechanical Engineering, 2008. 

 


